Python:轮流下载多个文件
在这个脚本中,有一个循环用来下载文件并保存(使用curl工具)。但是这个循环的执行速度太快了,导致下载和保存的操作没有足够的时间完成。因此,最终得到的文件会出现问题,变得不完整。
def get_images_thread(table):
class LoopThread ( threading.Thread ):
def run ( self ):
global db
c=db.cursor()
c.execute(""" SELECT * FROM js_stones ORDER BY stone_id LIMIT 1
""")
ec = EasyCurl(table)
while(1):
stone = c.fetchone()
if stone == None:
break
img_fname = stone[2]
print img_fname
url = "http://www.jstone.it/"+img_fname
fname = url.strip("/").split("/")[-1].strip()
ec.perform(url, filename="D:\\Var\\Python\\Jstone\\downloadeble_pictures\\"+fname,
progress=ec.textprogress)
2 个回答
-1
如果我理解你的问题没错的话,
from time import sleep
sleep(1)
这个方法应该能“解决”你的问题(虽然这个方法有点不太正规!)。相关的文档可以在这里找到。不过,我建议你先确认一下,这确实是你遇到的问题。因为暂停几秒钟导致文件下载出错的可能性几乎是零。提供更多细节会更好。
os.waitpid()
这个方法也可能有帮助。
4
这是来自 PycURL库示例 的一段摘录,
# Make a queue with (url, filename) tuples
queue = Queue.Queue()
for url in urls:
url = url.strip()
if not url or url[0] == "#":
continue
filename = "doc_%03d.dat" % (len(queue.queue) + 1)
queue.put((url, filename))
# Check args
assert queue.queue, "no URLs given"
num_urls = len(queue.queue)
num_conn = min(num_conn, num_urls)
assert 1 <= num_conn <= 10000, "invalid number of concurrent connections"
print "PycURL %s (compiled against 0x%x)" % (pycurl.version, pycurl.COMPILE_LIBCURL_VERSION_NUM)
print "----- Getting", num_urls, "URLs using", num_conn, "connections -----"
class WorkerThread(threading.Thread):
def __init__(self, queue):
threading.Thread.__init__(self)
self.queue = queue
def run(self):
while 1:
try:
url, filename = self.queue.get_nowait()
except Queue.Empty:
raise SystemExit
fp = open(filename, "wb")
curl = pycurl.Curl()
curl.setopt(pycurl.URL, url)
curl.setopt(pycurl.FOLLOWLOCATION, 1)
curl.setopt(pycurl.MAXREDIRS, 5)
curl.setopt(pycurl.CONNECTTIMEOUT, 30)
curl.setopt(pycurl.TIMEOUT, 300)
curl.setopt(pycurl.NOSIGNAL, 1)
curl.setopt(pycurl.WRITEDATA, fp)
try:
curl.perform()
except:
import traceback
traceback.print_exc(file=sys.stderr)
sys.stderr.flush()
curl.close()
fp.close()
sys.stdout.write(".")
sys.stdout.flush()
# Start a bunch of threads
threads = []
for dummy in range(num_conn):
t = WorkerThread(queue)
t.start()
threads.append(t)
# Wait for all threads to finish
for thread in threads:
thread.join()