Python 地理编码按距离过滤
我需要筛选一些地理坐标,看看哪些离我现在的位置近。比如,我想从一堆餐馆的地理坐标中找出那些距离我当前位置10英里以内的餐馆。
有没有人能告诉我一个函数,可以把距离转换成纬度和经度的变化量?比如:
class GeoCode(object):
"""Simple class to store geocode as lat, lng attributes."""
def __init__(self, lat=0, lng=0, tag=None):
self.lat = lat
self.lng = lng
self.tag = None
def distance_to_deltas(geocode, max_distance):
"""Given a geocode and a distance, provides dlat, dlng
such that
|geocode.lat - dlat| <= max_distance
|geocode.lng - dlng| <= max_distance
"""
# implementation
# uses inverse Haversine, or other function?
return dlat, dlng
注意:我使用的是最上界范数来计算距离。
4 个回答
0
如果你把数据存储在MongoDB里,它会帮你很方便地进行地理位置搜索,而且比上面提到的纯Python解决方案要好,因为它会为你处理优化问题。
1
这是使用哈弗辛公式计算经纬度之间距离的方法:
import math
R = 6371 # km
dLat = (lat2-lat1) # Make sure it's in radians, not degrees
dLon = (lon2-lon1) # Idem
a = math.sin(dLat/2) * math.sin(dLat/2) +
math.cos(lat1) * math.cos(lat2) *
math.sin(dLon/2) * math.sin(dLon/2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
d = R * c;
现在,测试“d”(同样是以公里为单位)是否超过你的阈值就变得很简单。如果你想要其他单位的距离,只需调整半径即可。
抱歉我不能给你一个现成的解决方案,但我不太理解你的代码框架(见评论)。
另外,现在你可能更想使用球面余弦定律,而不是哈弗辛公式。因为在数值稳定性方面的优势已经不再值得,而且球面余弦定律更简单易懂、编写和使用。
6
看起来之前没有一个好的Python实现。不过幸运的是,StackOverflow的“相关文章”侧边栏可以帮到我们。这篇SO文章提到了一篇很棒的文章,里面有数学公式和Java的实现。你需要的那个函数其实很短,已经嵌入在我下面的Python代码中。经过测试,效果如文中所示。请注意评论中的警告。
from math import sin, cos, asin, sqrt, degrees, radians
Earth_radius_km = 6371.0
RADIUS = Earth_radius_km
def haversine(angle_radians):
return sin(angle_radians / 2.0) ** 2
def inverse_haversine(h):
return 2 * asin(sqrt(h)) # radians
def distance_between_points(lat1, lon1, lat2, lon2):
# all args are in degrees
# WARNING: loss of absolute precision when points are near-antipodal
lat1 = radians(lat1)
lat2 = radians(lat2)
dlat = lat2 - lat1
dlon = radians(lon2 - lon1)
h = haversine(dlat) + cos(lat1) * cos(lat2) * haversine(dlon)
return RADIUS * inverse_haversine(h)
def bounding_box(lat, lon, distance):
# Input and output lats/longs are in degrees.
# Distance arg must be in same units as RADIUS.
# Returns (dlat, dlon) such that
# no points outside lat +/- dlat or outside lon +/- dlon
# are <= "distance" from the (lat, lon) point.
# Derived from: http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates
# WARNING: problems if North/South Pole is in circle of interest
# WARNING: problems if longitude meridian +/-180 degrees intersects circle of interest
# See quoted article for how to detect and overcome the above problems.
# Note: the result is independent of the longitude of the central point, so the
# "lon" arg is not used.
dlat = distance / RADIUS
dlon = asin(sin(dlat) / cos(radians(lat)))
return degrees(dlat), degrees(dlon)
if __name__ == "__main__":
# Examples from Jan Matuschek's article
def test(lat, lon, dist):
print "test bounding box", lat, lon, dist
dlat, dlon = bounding_box(lat, lon, dist)
print "dlat, dlon degrees", dlat, dlon
print "lat min/max rads", map(radians, (lat - dlat, lat + dlat))
print "lon min/max rads", map(radians, (lon - dlon, lon + dlon))
print "liberty to eiffel"
print distance_between_points(40.6892, -74.0444, 48.8583, 2.2945) # about 5837 km
print
print "calc min/max lat/lon"
degs = map(degrees, (1.3963, -0.6981))
test(*degs, dist=1000)
print
degs = map(degrees, (1.3963, -0.6981, 1.4618, -1.6021))
print degs, "distance", distance_between_points(*degs) # 872 km