scipy智能优化
我需要用直线来拟合来自不同数据集的一些点。对于每个数据集,我想拟合一条线。所以我得到了描述第i条线的参数ai和bi:ai + bi*x。问题是,我想让所有的ai都相等,因为我希望它们有相同的截距。这里有一个教程:http://www.scipy.org/Cookbook/FittingData#head-a44b49d57cf0165300f765e8f1b011876776502f。不同的是,我不知道我有多少个数据集。我的代码是这样的:
from numpy import *
from scipy import optimize
# here I have 3 dataset, but in general I don't know how many dataset are they
ypoints = [array([0, 2.1, 2.4]), # first dataset, 3 points
array([0.1, 2.1, 2.9]), # second dataset
array([-0.1, 1.4])] # only 2 points
xpoints = [array([0, 2, 2.5]), # first dataset
array([0, 2, 3]), # second, also x coordinates are different
array([0, 1.5])] # the first coordinate is always 0
fitfunc = lambda a, b, x: a + b * x
errfunc = lambda p, xs, ys: array([ yi - fitfunc(p[0], p[i+1], xi)
for i, (xi,yi) in enumerate(zip(xs, ys)) ])
p_arrays = [r_[0.]] * len(xpoints)
pinit = r_[[ypoints[0][0]] + p_arrays]
fit_parameters, success = optimize.leastsq(errfunc, pinit, args = (xpoints, ypoints))
我得到了
Traceback (most recent call last):
File "prova.py", line 19, in <module>
fit_parameters, success = optimize.leastsq(errfunc, pinit, args = (xpoints, ypoints))
File "/usr/lib64/python2.6/site-packages/scipy/optimize/minpack.py", line 266, in leastsq
m = check_func(func,x0,args,n)[0]
File "/usr/lib64/python2.6/site-packages/scipy/optimize/minpack.py", line 12, in check_func
res = atleast_1d(thefunc(*((x0[:numinputs],)+args)))
File "prova.py", line 14, in <lambda>
for i, (xi,yi) in enumerate(zip(xs, ys)) ])
ValueError: setting an array element with a sequence.
2 个回答
1
(顺便说一句:使用 def
来定义函数,而不是用 lambda
给它起个名字——这完全是个笑话,没什么好处,lambda
只适合用来创建匿名函数!)
你的 errfunc
应该返回一个浮点数的序列(可以是数组或其他形式),但现在并不是这样,因为你试图把每个 y
点的差值(记住,ypoints
也就是 ys
是一个数组的列表!)和拟合函数的结果放进你的数组里。所以你需要把表达式 yi - fitfunc(p[0], p[i+1], xi)
简化成一个单一的浮点数,比如 norm(yi - fitfunc(p[0], p[i+1], xi))
。
1
如果你只是想要一个线性拟合,那么用线性回归来估算会更好,而不是用非线性优化的方法。你可以使用scikits.statsmodels来获得更多的拟合统计数据。
import numpy as np
from numpy import array
ypoints = np.r_[array([0, 2.1, 2.4]), # first dataset, 3 points
array([0.1, 2.1, 2.9]), # second dataset
array([-0.1, 1.4])] # only 2 points
xpoints = [array([0, 2, 2.5]), # first dataset
array([0, 2, 3]), # second, also x coordinates are different
array([0, 1.5])] # the first coordinate is always 0
xp = np.hstack(xpoints)
indicator = []
for i,a in enumerate(xpoints):
indicator.extend([i]*len(a))
indicator = np.array(indicator)
x = xp[:,None]*(indicator[:,None]==np.arange(3)).astype(int)
x = np.hstack((np.ones((xp.shape[0],1)),x))
print np.dot(np.linalg.pinv(x), ypoints)
# [ 0.01947973 0.98656987 0.98481549 0.92034684]
回归的矩阵有一个共同的截距,但每个数据集有不同的列:
>>> x
array([[ 1. , 0. , 0. , 0. ],
[ 1. , 2. , 0. , 0. ],
[ 1. , 2.5, 0. , 0. ],
[ 1. , 0. , 0. , 0. ],
[ 1. , 0. , 2. , 0. ],
[ 1. , 0. , 3. , 0. ],
[ 1. , 0. , 0. , 0. ],
[ 1. , 0. , 0. , 1.5]])