在DataFrame中使用Python Pandas计算日期范围的小时数

2 投票
3 回答
1507 浏览
提问于 2025-05-16 19:04

我想计算一段时间内的值班小时数。正常情况下,从周一到周五每天是16小时,而周六和周日则是24小时。

我已经写好了代码,这段代码可以在两个特定日期之间正常工作:

date1 = date(2017,4, 13)
date2 = date(2017,4, 17)

def daterange(d1, d2):
     return (d1 + datetime.timedelta(days=i) for i in range((d2 - d1).days + 1))

total = 0
for n in daterange(date1, date2):
    if n.weekday() < 5:
        total += 16
    else: 
        total += 24
print (total)

但是我在将这个逻辑应用到日期范围时遇到了问题:

Start      End
2017-02-03 2017-03-15
2017-02-05 2017-03-16
2017-02-06 2017-03-17
2017-02-10 2017-03-18
...        ...

上面这些列的类型是datetime64[ns]

而且我遇到的错误是TypeError: 无法将系列转换为'int'类型

有没有办法计算这个时间序列列的值?可以放在一个新列里,或者直接在结果中显示。

提前谢谢你们!

相关问题:

  • 暂无相关问题
暂无标签

3 个回答

0

你需要使用apply这个函数来做到这一点。这个错误只是告诉你,你没有正确地调用这个函数。

在pandas中,apply方法是把一个函数应用到数据表的每一行,也就是一行一行地处理。

把你的pandas数据表函数调用改成:

df['new_column'] = df.apply( lambda x : daterange(x['start'],x['end']))

如果你需要进一步的帮助,随时告诉我。

1

如果我理解正确的话,你可以使用下面这个简单的映射:

示例序列:

In [110]: s = pd.date_range('2017-01-01', periods=10).to_series()

In [111]: s
Out[111]:
2017-01-01   2017-01-01
2017-01-02   2017-01-02
2017-01-03   2017-01-03
2017-01-04   2017-01-04
2017-01-05   2017-01-05
2017-01-06   2017-01-06
2017-01-07   2017-01-07
2017-01-08   2017-01-08
2017-01-09   2017-01-09
2017-01-10   2017-01-10
Freq: D, dtype: datetime64[ns]

映射关系

# DateLikeSeries.dt.weekday returns the day of the week with Monday=0, Sunday=6
In [94]: mapping = {i:16 if i<5 else 24 for i in range(7)}

In [95]: mapping
Out[95]: {0: 16, 1: 16, 2: 16, 3: 16, 4: 16, 5: 24, 6: 24}

In [112]: s.dt.weekday.map(mapping)
Out[112]:
2017-01-01    24
2017-01-02    16
2017-01-03    16
2017-01-04    16
2017-01-05    16
2017-01-06    16
2017-01-07    24
2017-01-08    24
2017-01-09    16
2017-01-10    16
Freq: D, dtype: int64


In [113]: s.dt.weekday.map(mapping).sum()
Out[113]: 184

你可以把这个逻辑应用到你的数据框(DataFrame)上:

In [107]: df
Out[107]:
       Start        End
0 2017-02-03 2017-03-15
1 2017-02-05 2017-03-16
2 2017-02-06 2017-03-17
3 2017-02-10 2017-03-18

In [108]: %paste
df['oncall_hours'] = \
    df.apply(lambda x: pd.date_range(x['Start'], x['End'])
                         .to_series()
                         .dt.weekday
                         .map(mapping)
                         .sum(),
             axis=1)
## -- End pasted text --

In [109]: df
Out[109]:
       Start        End  oncall_hours
0 2017-02-03 2017-03-15           752
1 2017-02-05 2017-03-16           728
2 2017-02-06 2017-03-17           720
3 2017-02-10 2017-03-18           680
1

你可以用自定义函数配合 apply 来实现:

df['new'] = df.apply(lambda x : np.where(pd.date_range(x['Start'], x['End']).weekday < 5, 16, 24).sum(), axis=1)
print (df)
       Start        End  new
0 2017-02-03 2017-03-15  752
1 2017-02-05 2017-03-16  728
2 2017-02-06 2017-03-17  720
3 2017-02-10 2017-03-18  680

这和下面的步骤是一样的:

  • 先用 date_range 从两个日期创建一个时间范围
  • 然后用 weekday 获取星期几
  • 接着通过 numpy.where 根据条件获取小时数,最后用 sum 求和

def f(x):
    b = pd.date_range(x['Start'], x['End']).weekday
    return np.where(b < 5, 16, 24).sum()

df['new'] = df.apply(f, axis=1)
print (df)
       Start        End  new
0 2017-02-03 2017-03-15  752
1 2017-02-05 2017-03-16  728
2 2017-02-06 2017-03-17  720
3 2017-02-10 2017-03-18  680

还有另一种解决方案,不过我觉得这更复杂:

#reshape df
df1 = df.stack().reset_index()
df1.columns = ['i','c','date']
#groupby by index and resample to days, forward fill NaNs
df1 = df1.set_index('date').groupby('i').resample('D').ffill()
         .reset_index(level=0, drop=True).reset_index()
#get hours
df1['tot'] = np.where(df1['date'].dt.weekday < 5, 16, 24)
#sum by index
s = df1.groupby('i')['tot'].sum()
#join to original
df = df.join(s)
print (df.head(10))
       Start        End  tot
0 2017-02-03 2017-03-15  752
1 2017-02-05 2017-03-16  728
2 2017-02-06 2017-03-17  720
3 2017-02-10 2017-03-18  680

时间

df = pd.concat([df]*100).reset_index(drop=True) 
print (df)

def f(df):
    df1 = df.stack().reset_index()
    df1.columns = ['i','c','date']
    df1 = df1.set_index('date').groupby('i').resample('D').ffill().reset_index(level=0, drop=True).reset_index()
    df1['tot'] = np.where(df1['date'].dt.weekday < 5, 16, 24)
    s = df1.groupby('i')['tot'].sum()
    return df.join(s)

print (f(df))
mapping = {i:16 if i<5 else 24 for i in range(7)}

In [190]: %timeit (f(df))
1 loop, best of 3: 482 ms per loop

#MaxU solution
In [191]: %timeit df['oncall_hours'] =  df.apply(lambda x: pd.date_range(x['Start'], x['End']).to_series().dt.weekday.map(mapping).sum(), axis=1)
1 loop, best of 3: 531 ms per loop

In [192]: %timeit df['new'] = df.apply(lambda x : np.where(pd.date_range(x['Start'], x['End']).weekday < 5, 16, 24).sum(), axis=1)
10 loops, best of 3: 166 ms per loop

撰写回答