如何使用SentenceTransformers创建向量嵌入?
我发现了这段代码:https://github.com/pixegami/langchain-rag-tutorial/blob/main/create_database.py
这段代码的功能是把文档分成小块,然后为每一块创建一个向量表示,并把这些向量保存到Chroma数据库里。不过,原始代码使用了OpenAI的密钥来生成这些向量。因为我没有OpenAI的访问权限,所以我尝试使用免费的替代方案——SentenceTransformers。但是我没有办法正确地重写这段代码。
这是我目前的尝试:
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from sentence_transformers import SentenceTransformer
from langchain.vectorstores.chroma import Chroma
import os
import shutil
CHROMA_PATH = "chroma"
DATA_PATH = "data/books"
embedder = SentenceTransformer("all-MiniLM-L6-v2")
def main():
generate_data_store()
def generate_data_store():
documents = load_documents()
chunks = split_text(documents)
save_to_chroma(chunks)
def load_documents():
loader = DirectoryLoader(DATA_PATH, glob="*.md")
documents = loader.load()
return documents
def split_text(documents: list[Document]):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=300,
chunk_overlap=100,
length_function=len,
add_start_index=True,
)
chunks = text_splitter.split_documents(documents)
print(f"Split {len(documents)} documents into {len(chunks)} chunks.")
document = chunks[10]
print(document.page_content)
print(document.metadata)
return chunks
def save_to_chroma(chunks: list[Document]):
# Clear out the database first.
if os.path.exists(CHROMA_PATH):
shutil.rmtree(CHROMA_PATH)
# Create a new DB from the documents.
db = Chroma.from_documents(
chunks, embedder.encode, persist_directory=CHROMA_PATH
)
db.persist()
print(f"Saved {len(chunks)} chunks to {CHROMA_PATH}.")
if __name__ == "__main__":
main()
这是我遇到的错误:
Traceback (most recent call last):
File "/media/andrew/Simple Tom/Robotics/Crew_AI/langchain-rag-tutorial/create_database.py", line 56, in <module>
main()
File "/media/andrew/Simple Tom/Robotics/Crew_AI/langchain-rag-tutorial/create_database.py", line 15, in main
generate_data_store()
File "/media/andrew/Simple Tom/Robotics/Crew_AI/langchain-rag-tutorial/create_database.py", line 20, in generate_data_store
save_to_chroma(chunks)
File "/media/andrew/Simple Tom/Robotics/Crew_AI/langchain-rag-tutorial/create_database.py", line 49, in save_to_chroma
db = Chroma.from_documents(
File "/home/andrew/.local/lib/python3.10/site-packages/langchain_community/vectorstores/chroma.py", line 778, in from_documents
return cls.from_texts(
File "/home/andrew/.local/lib/python3.10/site-packages/langchain_community/vectorstores/chroma.py", line 736, in from_texts
chroma_collection.add_texts(
File "/home/andrew/.local/lib/python3.10/site-packages/langchain_community/vectorstores/chroma.py", line 275, in add_texts
embeddings = self._embedding_function.embed_documents(texts)
AttributeError: 'function' object has no attribute 'embed_documents'
我不是程序员。如果有人能告诉我,是否有可能在没有OpenAI密钥的情况下实现这个功能,如果可以的话,能指出我哪里出错了吗,那就太好了。
1 个回答
1
- 首先,定义你的
embedding
模型,使用HuggingFaceEmbeddings
。
from langchain_community.embeddings import HuggingFaceEmbeddings
embedder = HuggingFaceEmbeddings(
model_name = "sentence-transformers/all-MiniLM-L6-v2"
)
- 接着,把这些小块数据嵌入到向量数据库中。
db = Chroma.from_documents(
documents=chunks,
embedding=embedder,
persist_directory=CHROMA_PATH
)
db.persist()