如何在Python中解决LCP(线性互补问题)?
有没有什么好的库可以在Python中数值求解一个线性互补问题?
补充:我需要一个能运行的Python代码示例,因为大多数库似乎只解决二次问题,而我在把线性互补问题转换成二次问题时遇到了困难。
4 个回答
3
解决混合非线性互补问题(MCPs,包含更一般的线性互补问题LCP)的最佳算法是PATH求解器:http://pages.cs.wisc.edu/~ferris/path.html
PATH求解器可以在matlab和GAMS中使用。这两个工具都有Python的接口。我选择使用GAMS,因为它有免费的版本。下面是使用GAMS的Python接口一步步解决LCP的过程。我使用的是Python 3.6:
下载并安装GAMS:https://www.gams.com/download/
按照这里的说明将API安装到Python中:https://www.gams.com/latest/docs/API_PY_TUTORIAL.html 我使用了conda,切换到Python 3.6的API文件所在目录,然后输入
python setup.py install
创建一个.gms文件(GAMS文件),命名为lcp_for_py.gms,内容包括:
sets i; alias(i,j); parameters m(i,i),b(i); $gdxin lcp_input $load i m b $gdxin positive variables z(i); equations Linear(i); Linear(i).. sum(j,m(i,j)*z(j)) + b(i) =g= 0; model lcp linear complementarity problem/Linear.z/; options mcp = path; solve lcp using mcp; display z.L;
你的Python代码大致如下:
import gams #Set working directory, GamsWorkspace and the Database worDir = "<THE PATH WHERE YOU STORED YOUR .GMS-FILE>" #"C:\documents\gams\" ws=gams.GamsWorkspace(working_directory=worDir) db=ws.add_database(database_name="lcp_input") #Set the matrix and the vector of the LCP as lists matrix = [[1,1],[2,1]] vector = [0,-2] #Create the Gams Set index = [] for k in range(0,len(matrix)): index.append("i"+str(k+1)) i = db.add_set("i",1,"number of decision variables") for k in index: i.add_record(k) #Create a Gams Parameter named m and add records m = db.add_parameter_dc("m", [i,i], "matrix of the lcp") for k in range(0,len(matrix)): for l in range(0,len(matrix[0])): m.add_record([index[k],index[l]]).value = matrix[k][l] #Create a Gams Parameter named b and add records b = db.add_parameter_dc("b",[i],"bias of quadratics") for k in range(0, len(vector)): b.add_record(index[k]).value = vector[k] #run the GamsJob using the Gams File and the database lcp = ws.add_job_from_file("lcp_for_py.gms") lcp.run(databases = db) #Save the solution as a list an print it z = [] for rec in lcp.out_db["z"]: z.append(rec.level) print(z)
4
在使用Python进行二次规划时,我使用的是来自cvxopt
的qp
求解器(源代码)。通过这个工具,可以很简单地把线性互补问题(LCP)转换成二次规划问题(QP),具体可以参考维基百科上的内容。下面是一个例子:
from cvxopt import matrix, spmatrix
from cvxopt.blas import gemv
from cvxopt.solvers import qp
def append_matrix_at_bottom(A, B):
l = []
for x in xrange(A.size[1]):
for i in xrange(A.size[0]):
l.append(A[i+x*A.size[0]])
for i in xrange(B.size[0]):
l.append(B[i+x*B.size[0]])
return matrix(l,(A.size[0]+B.size[0],A.size[1]))
M = matrix([[ 4.0, 6, -4, 1.0 ],
[ 6, 1, 1.0 2.0 ],
[-4, 1.0, 2.5, -2.0 ],
[ 1.0, 2.0, -2.0, 1.0 ]])
q = matrix([12, -10, -7.0, 3])
I = spmatrix(1.0, range(M.size[0]), range(M.size[1]))
G = append_matrix_at_bottom(-M, -I) # inequality constraint G z <= h
h = matrix([x for x in q] + [0.0 for _x in range(M.size[0])])
sol = qp(2.0 * M, q, G, h) # find z, w, so that w = M z + q
if sol['status'] == 'optimal':
z = sol['x']
w = matrix(q)
gemv(M, z, w, alpha=1.0, beta=1.0) # w = M z + q
print(z)
print(w)
else:
print('failed')
请注意:
- 这段代码完全没有经过测试,请仔细检查;
- 把LCP转成QP的方式肯定不是最好的解决方案,还有其他更好的方法。