python内存 del list[:] 与 list = [] 的区别

3 投票
1 回答
3921 浏览
提问于 2025-04-15 17:58

在Python中,我注意到如果你这样做:

mylist = []

for i in range(0,100000000):
    mylist.append('something here to take memory')

mylist = []

看起来第二次调用

mylist = []

会移除引用,然后它就会被回收,但我观察内存时发现并不是这样。

当我使用

del mylist[:]

时,几乎所有东西都被删除了,只剩下几兆(只是看着进程)。

当我使用

del mylist[:]
gc.collect()

时,似乎内存又回到了创建列表之前的状态。

所以……为什么

mylist = []

不管用呢??从我能看出来的,似乎没有其他东西在引用它。

1 个回答

9

你是怎么测量这个的?

我做了一个小测试,结果和你的不一样。这里是我的代码:

import meminfo, gc, commands

page_size = int(commands.getoutput("getconf PAGESIZE"))

def stat(message):
    s = meminfo.proc_stat()
    print "My memory usage %s: RSS: %dkb, VSIZE: %dkb" % (
        message, s['rss']*page_size/1024, s['vsize']/1024)
mylist = []

stat("before allocating a big list")
for i in range(0,3000000):
    mylist.append('something here to take memory')

stat("after allocating big list")
### uncomment one of these:
mylist = []
# del mylist[:]
stat("after dropping a big list")
gc.collect()
stat("after gc.collect()")
gc.collect()
stat("after second gc.collect()")
gc.collect()
stat("after third gc.collect()")

使用的meminfo模块在这里:http://gist.github.com/276090

当我用mylist=[]时,结果是:

My memory usage before allocating a big list: RSS: 3396kb, VSIZE: 7324kb
My memory usage after allocating big list: RSS: 50700kb, VSIZE: 55084kb
My memory usage after dropping a big list: RSS: 38980kb, VSIZE: 42824kb
My memory usage after gc.collect(): RSS: 38980kb, VSIZE: 42824kb
My memory usage after second gc.collect(): RSS: 38980kb, VSIZE: 42824kb
My memory usage after third gc.collect(): RSS: 38980kb, VSIZE: 42824kb

当我用del mylist[:]时,结果是:

My memory usage before allocating a big list: RSS: 3392kb, VSIZE: 7324kb
My memory usage after allocating big list: RSS: 50696kb, VSIZE: 55084kb
My memory usage after dropping a big list: RSS: 38976kb, VSIZE: 42824kb
My memory usage after gc.collect(): RSS: 38976kb, VSIZE: 42824kb
My memory usage after second gc.collect(): RSS: 38976kb, VSIZE: 42824kb
My memory usage after third gc.collect(): RSS: 38976kb, VSIZE: 42824kb

Python可能会为自己的内存堆分配内存,但它不一定会在垃圾回收后立即释放这些内存。

撰写回答