Python:使用多进程池通过队列写入单个文件

23 投票
3 回答
27034 浏览
提问于 2025-04-30 00:28

我有成千上万的文本文件,想用不同的方式来处理它们。我希望把处理的结果保存到一个文件里,避免出现同步问题。我之前一直在用多进程池来节省时间,但我不知道怎么把池和队列结合起来。

下面的代码会保存输入文件的名字以及文件中连续出现的“x”的最大数量。不过,我希望所有的进程都能把结果保存到同一个文件里,而不是像我示例中那样保存到不同的文件里。任何帮助都会非常感激。

import multiprocessing

with open('infilenamess.txt') as f:
    filenames = f.read().splitlines()

def mp_worker(filename):
 with open(filename, 'r') as f:
      text=f.read()
      m=re.findall("x+", text)
      count=len(max(m, key=len))
      outfile=open(filename+'_results.txt', 'a')
      outfile.write(str(filename)+'|'+str(count)+'\n')
      outfile.close()

def mp_handler():
    p = multiprocessing.Pool(32)
    p.map(mp_worker, filenames)

if __name__ == '__main__':
    mp_handler()
暂无标签

3 个回答

3

这是我使用多进程管理器对象的方法。这种方法的好处在于,当处理程序在 run_multi() 函数中退出时,文件写入队列会自动关闭,这样代码就变得非常简洁易懂,你也不用费心去停止监听这个队列。

from functools import partial
from multiprocessing import Manager, Pool, Queue
from random import randint
import time

def run_multi():
    input = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    with Manager() as manager:
        pool = Pool()  # By default pool will size depending on cores available
        message_queue = manager.Queue()  # Queue for sending messages to file writer listener
        pool.apply_async(file_writer, (message_queue, ))  # Start file listener ahead of doing the work
        pool.map(partial(worker, message_queue=message_queue), input)  # Partial function allows us to use map to divide workload

def worker(input: int, message_queue: Queue):
    message_queue.put(input * 10)
    time.sleep(randint(1, 5))  # Simulate hard work

def file_writer(message_queue: Queue):
    with open("demo.txt", "a") as report:
        while True:
            report.write(f"Value is: {message_queue.get()}\n")

if __name__ == "__main__":
    run_multi()
13

我把被认可的答案简化了一下,以便更好地理解这个是怎么回事。我把它发在这里,希望能帮到其他人。

import multiprocessing

def mp_worker(number):
    number += 1
    return number

def mp_handler():
    p = multiprocessing.Pool(32)
    numbers = list(range(1000))
    with open('results.txt', 'w') as f:
        for result in p.imap(mp_worker, numbers):
            f.write('%d\n' % result)

if __name__=='__main__':
    mp_handler()
45

多进程池为你实现了一个队列。你只需要使用一个池的方法,它会把工作者的返回值传给调用者。使用 imap 方法效果很好:

import multiprocessing 
import re

def mp_worker(filename):
    with open(filename) as f:
        text = f.read()
    m = re.findall("x+", text)
    count = len(max(m, key=len))
    return filename, count

def mp_handler():
    p = multiprocessing.Pool(32)
    with open('infilenamess.txt') as f:
        filenames = [line for line in (l.strip() for l in f) if line]
    with open('results.txt', 'w') as f:
        for result in p.imap(mp_worker, filenames):
            # (filename, count) tuples from worker
            f.write('%s: %d\n' % result)

if __name__=='__main__':
    mp_handler()

撰写回答