如何将矩阵分解为连通分量的和?
我有一个由0和1组成的矩阵:
1 0 0 0 0
0 0 1 1 0
a = 0 0 1 1 0
1 0 0 0 0
1 1 0 0 0
我想用Python把它分解成一些连通的部分。这里的“连通”是指每个“1”周围至少有一个其他的“1”在上面、下面、左边或右边。如果没有这样的“1”,那这个“1”就算是孤立的:
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
a = 0 0 1 1 0 = 0 0 0 0 0 + 0 0 1 1 0 + 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
有趣的是,在这个问题中(二维二进制矩阵中最大的1的矩形),Guy Adini建议使用广度优先搜索(BFS)来将矩阵分解成连通部分。不过我找不到用Python实现这个方法的代码,也不知道怎么用BFS来解决我的问题。
2 个回答
1
这里有一个自定义的实现方式。如果你想的话,可以修改它来去掉重复的部分。
import itertools
class Matrix():
def __init__(self, matrix):
self.matrix = matrix
def computeConnectedComponents(self):
rows_id = list(range(len(self.matrix)))
cols_id = list(range(len(self.matrix[0])))
#here are the position of every 1 in the grid. ( row number, column number) indexes start at 0
positions = [couple for couple in self.generate_pairs(rows_id, cols_id) if self.matrix[couple[0]][couple[1]]==1]
#here we store all the connected component finded
allConnectedComponents = []
#while there is position not affected to any connected component
while positions != [] :
#the first element is taken as start of the connected component
to_explore = [positions.pop(0)]
currentConnectedComponent = set()
#while there is node connected to a node connected to the component
while list(to_explore) != []:
currentNode = to_explore.pop()
currentConnectedComponent.add(currentNode)
to_explore += [coord for coord in self.node_neighbourhood(currentNode) if (self.matrix[coord[0]][coord[1]]==1 and (coord not in to_explore) and (coord not in currentConnectedComponent))]
allConnectedComponents.append(currentConnectedComponent)
positions = [position for position in positions if position not in currentConnectedComponent]
return allConnectedComponents
#http://stackoverflow.com/questions/16135833/generate-combinations-of-elements-from-multiple-lists
def generate_pairs(self, *args):
for i, l in enumerate(args, 1):
for x, y in itertools.product(l, itertools.chain(*args[i:])):
yield (x, y)
def node_neighbourhood(self, coordinates):
row, column = coordinates[0], coordinates[1]
result = []
if (row - 1) >= 0 :
result.append((row-1, column))
if (row + 1) < len(self.matrix):
result.append((row+1, column))
if (column - 1) >= 0:
result.append((row, column-1))
if (column + 1) < len(self.matrix[0]):
result.append((row, column+1))
return result
if __name__ == "__main__":
data = [[1,0,0,0,0],
[0,0,1,1,0],
[0,0,1,1,0],
[1,0,0,0,0],
[1,1,0,0,0]]
matrix = Matrix(data)
for connectedComponent in matrix.computeConnectedComponents():
print(connectedComponent)
1
一个可行的算法如下:
你需要保持一个和原始矩阵大小一样的
visited
矩阵,用来记录哪些元素已经被算法访问过(或者说,你可以用一个集合来存储这些被访问元素的坐标)。然后,你要逐个检查矩阵中的所有元素:
- 如果某个元素没有被访问过,并且它的值是1,你就把它标记为已访问,然后递归地探索它周围的所有邻居。这个递归的函数需要返回所有连接的元素(可以是一个包含这些元素的矩阵,或者是一个包含它们坐标的集合等等)。