tkinter和matplotlib:在Linux下窗口未显示直到程序关闭
我写了一个程序,基本上是通过按不同的按钮来绘制不同的数据。这个程序在Windows系统下运行得很好,但当我尝试把它移植到Linux(Red Hat v6)时,遇到了一个奇怪的问题:我想要绘制的窗口在我关闭主程序之前根本不显示。无论我尝试绘制哪个图(比如图1、图2等),或者是否尝试输入plt.show(),情况都是一样的。
我写的程序差不多有1000行代码,但我创建了一个简化版的程序,问题依然存在。它在Windows下运行正常,但在Linux下,我必须先关闭主窗口,matplotlib的窗口才会出现。
有效的代码:
import matplotlib.pyplot as plt
from tkinter import *
def click():
x=['0','1','2']
plt.plot(x,x)
plotGUI=Tk()
butt1=Button(plotGUI,text="Test", command=click).grid()
plotGUI.mainloop()
2 个回答
如果你的 简化代码 还是无法显示 Tk-toplevel 窗口,可以加上一行:
plotGUI.lift() # force WM to raise Tk() window
plotGUI.mainloop()
如果 简化代码 在使用 matplotlib
的时候遇到问题,需要更具体地说明你用什么方法把 matplotlib
的输出放到 Tkinter 的画布等地方。
如果 代码 试图依赖默认的 matplotlib
工具,比如 plt.show()
,那么代码会出现两个相邻的 主循环 .mainloop()
-- 第一个是 Tk()
的 -- 第二个是默认的 matplotlib
的 .show()
-- 这样你的代码就会变得很难控制这两个相邻的用户界面。
共同集成的用户界面
为了拥有不相邻的用户界面控制器,并且享受共同集成用户界面的更多好处,尝试重用 后端 工厂,直接在 Tkinter.Canvas
和你选择的其他小部件上绘图并进行控制。
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
然后继续构建一个完全集成的 GUI-MVC 层,涵盖 你的代码 和 matplotlib
的模型状态 / 输入控制器 / 视觉输出。
这里有一些更多的代码示例,供共同集成的用户界面参考:
class SuperShapeFrame( Frame ): # The user interface:
def __init__( self, master = None ):
Frame.__init__( self, master )
self.grid()
self.m = 3
self.n1 = 2
self.n1_scaling = LinearScaling( ( .1, 20 ), ( 0, 200 ) )
self.n2 = 18
self.n2_scaling = LinearScaling( ( .1, 20 ), ( 0, 200 ) )
self.n3 = 18
self.n3_scaling = LinearScaling( ( .1, 20 ), ( 0, 200 ) )
self.fig = Figure( ( 6, 6 ), dpi = 100 )
canvas = FigureCanvasTkAgg( self.fig, master = self )
canvas.get_tk_widget().grid( row = 0, column = 0, columnspan = 4 )
label = Label( self, text = 'M' )
label.grid( row = 1, column = 1 )
self.m_slider = Scale( self, from_ = 1, to = 20, \
orient = HORIZONTAL, command = lambda i : self.update_m() \
)
self.m_slider.grid( row = 1, column = 2 )
label = Label( self, text = 'N1' )
label.grid( row = 2, column = 1 )
self.n1_slider = Scale( self, from_ = 0, to = 200, \
orient = HORIZONTAL, command = lambda i : self.update_n1() \
)
self.n1_slider.grid( row = 2, column = 2 )
label = Label( self, text = 'N2' )
label.grid( row = 3, column = 1 )
self.n2_slider = Scale( self, from_ = 0, to = 200, \
orient = HORIZONTAL, command = lambda i : self.update_n2() \
)
self.n2_slider.grid( row = 3, column = 2 )
label = Label( self, text = 'N3' )
label.grid( row = 4, column = 1 )
self.n3_slider = Scale( self, from_ = 0, to = 200,
orient = HORIZONTAL, command = lambda i : self.update_n3() \
)
self.n3_slider.grid( row = 4, column = 2 )
self.draw_figure() # >>> ================================================================ DRAW FIRST APPEARANCE OF THE INSTANCE
def update_m( self ):
self.m = self.m_slider.get()
self.refresh_figure() # >>> .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. UPDATE
def update_n1( self ):
self.n1 = self.n1_scaling.dst_to_src( self.n1_slider.get() )
self.refresh_figure() # >>> .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. UPDATE
def update_n2( self ):
self.n2 = self.n2_scaling.dst_to_src( self.n2_slider.get() )
self.refresh_figure() # >>> .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. UPDATE
def update_n3(self):
self.n3 = self.n3_scaling.dst_to_src( self.n3_slider.get() )
self.refresh_figure() # >>> .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. UPDATE
def refresh_figure( self ): # <<< .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. UPDATE ACTUAL APPEARANCE OF THE INSTANCE
r = supershape_radius( self.phi, 1, 1, self.m, self.n1, self.n2, self.n3 ) # .CALC new polar values in radius dimension
self.lines.set_ydata( r ) # .MOD <lines>, selectively just their <lines>.set_ydata() coordinates
self.fig.canvas.draw_idle() # .GUI MVC-Visual part UPDATE via <self>.<fig>.<canvas>.draw_idle()
def draw_figure( self ): # <<< =============================================================== DRAW FIRST APPEARANCE OF THE INSTANCE
self.phi = np.linspace( 0, 2 * np.pi, 1024 ) # .STO <phi> a np.array with static fi-coordinates
r = supershape_radius( self.phi, 1, 1, self.m, self.n1, self.n2, self.n3 )
ax = self.fig.add_subplot( 111, polar = True ) #
self.lines, = ax.plot( self.phi, r, lw = 3. ) # .STO <lines> aListOfLINEs from .plot() function
self.fig.canvas.draw() # .GUI MVC-Visual part, enforce first visual output via <self>.<fig>.<canvas>.draw()
def TkDemo(): # Finally, we set up and start our user interface:
""" HELP: CookBook: Tk-GUI-MVC via SuperShape example
TESTS: TkDemo()
"""
root = Tk()
root.lift()
root.protocol( 'WM_DELETE_WINDOW', root.quit() ) # [X]-overide ---------------------------
app = SuperShapeFrame( root ) # <<<--- pass <root>
app.master.title( 'CookBook: Tk-GUI-MVC via SuperShape' )
app.mainloop()
pass
完整代码供 [Halldinz0r] 复制/粘贴重新测试,保持不变:
####################################################################### #
###
### TkDemo()
###
### KCA_plot_inTk ##################################################### # Tk() GUI ###################################################################################################### _plot_inTk TkDemo() #################
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
def supershape_radius( phi, a, b, m, n1, n2, n3 ): # define the function for the SuperShape curve using the following code:
theta = .25 * m * phi
cos = np.fabs( np.cos( theta ) / a ) ** n2
sin = np.fabs( np.sin( theta ) / b ) ** n3
r = ( cos + sin ) ** ( -1. / n1 )
r /= np.max( r )
return r
class LinearScaling( object ): # define a utility object to linearly scale a range into another as follows:
def __init__( self, src_range, dst_range ):
self.src_start, src_diff = src_range[0], src_range[1] - src_range[0]
self.dst_start, dst_diff = dst_range[0], dst_range[1] - dst_range[0]
self.src_to_dst_coeff = dst_diff / src_diff
self.dst_to_src_coeff = src_diff / dst_diff
def src_to_dst( self, X ):
return ( X - self.src_start ) * self.src_to_dst_coeff + self.dst_start
def dst_to_src( self, X ):
return ( X - self.dst_start) * self.dst_to_src_coeff + self.src_start
class SuperShapeFrame( Frame ): # The user interface:
def __init__( self, master = None ):
Frame.__init__( self, master )
self.grid()
self.m = 3
self.n1 = 2
self.n1_scaling = LinearScaling( ( .1, 20 ), ( 0, 200 ) )
self.n2 = 18
self.n2_scaling = LinearScaling( ( .1, 20 ), ( 0, 200 ) )
self.n3 = 18
self.n3_scaling = LinearScaling( ( .1, 20 ), ( 0, 200 ) )
self.fig = Figure( ( 6, 6 ), dpi = 100 )
canvas = FigureCanvasTkAgg( self.fig, master = self )
canvas.get_tk_widget().grid( row = 0, column = 0, columnspan = 4 )
label = Label( self, text = 'M' )
label.grid( row = 1, column = 1 )
self.m_slider = Scale( self, from_ = 1, to = 20, \
orient = HORIZONTAL, command = lambda i : self.update_m() \
)
self.m_slider.grid( row = 1, column = 2 )
label = Label( self, text = 'N1' )
label.grid( row = 2, column = 1 )
self.n1_slider = Scale( self, from_ = 0, to = 200, \
orient = HORIZONTAL, command = lambda i : self.update_n1() \
)
self.n1_slider.grid( row = 2, column = 2 )
label = Label( self, text = 'N2' )
label.grid( row = 3, column = 1 )
self.n2_slider = Scale( self, from_ = 0, to = 200, \
orient = HORIZONTAL, command = lambda i : self.update_n2() \
)
self.n2_slider.grid( row = 3, column = 2 )
label = Label( self, text = 'N3' )
label.grid( row = 4, column = 1 )
self.n3_slider = Scale( self, from_ = 0, to = 200,
orient = HORIZONTAL, command = lambda i : self.update_n3() \
)
self.n3_slider.grid( row = 4, column = 2 )
self.draw_figure() # >>> ================================================================ DRAW FIRST APPEARANCE OF THE INSTANCE
def update_m( self ):
self.m = self.m_slider.get()
self.refresh_figure() # >>> .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. UPDATE
def update_n1( self ):
self.n1 = self.n1_scaling.dst_to_src( self.n1_slider.get() )
self.refresh_figure() # >>> .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. UPDATE
def update_n2( self ):
self.n2 = self.n2_scaling.dst_to_src( self.n2_slider.get() )
self.refresh_figure() # >>> .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. UPDATE
def update_n3(self):
self.n3 = self.n3_scaling.dst_to_src( self.n3_slider.get() )
self.refresh_figure() # >>> .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. UPDATE
def refresh_figure( self ): # <<< .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. UPDATE ACTUAL APPEARANCE OF THE INSTANCE
r = supershape_radius( self.phi, 1, 1, self.m, self.n1, self.n2, self.n3 ) # .CALC new polar values in radius dimension
self.lines.set_ydata( r ) # .MOD <lines>, selectively just their <lines>.set_ydata() coordinates
self.fig.canvas.draw_idle() # .GUI MVC-Visual part UPDATE via <self>.<fig>.<canvas>.draw_idle()
def draw_figure( self ): # <<< =============================================================== DRAW FIRST APPEARANCE OF THE INSTANCE
self.phi = np.linspace( 0, 2 * np.pi, 1024 ) # .STO <phi> a np.array with static fi-coordinates
r = supershape_radius( self.phi, 1, 1, self.m, self.n1, self.n2, self.n3 )
ax = self.fig.add_subplot( 111, polar = True ) #
self.lines, = ax.plot( self.phi, r, lw = 3. ) # .STO <lines> aListOfLINEs from .plot() function
self.fig.canvas.draw() # .GUI MVC-Visual part, enforce first visual output via <self>.<fig>.<canvas>.draw()
def TkDemo(): # Finally, set up and start our user interface:
""" HELP: CookBook: Tk-GUI-MVC via SuperShape example
TESTS: TkDemo()
"""
root = Tk()
root.lift()
root.protocol( 'WM_DELETE_WINDOW', root.quit() ) # [X]-overide ---------------------------
app = SuperShapeFrame( root ) # <<<--- pass <root>
app.master.title( 'CookBook: Tk-GUI-MVC via SuperShape' )
app.mainloop()
pass
### ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ _plot_inTk TkDemo() ^^^^^^^^^^^^^^^^^^
我只需要添加以下内容,就能让它正常工作:
matplotlib.use('TkAgg')
这样一来,程序就和在Windows上一样能正常运行了,根本不需要其他修改。不过,我确实需要学习一下用户3666197分享的那些概念,以便在未来的项目中用得上。