将Python稀疏矩阵导入MATLAB
我在Python中有一个稀疏矩阵,使用的是CSR稀疏格式,现在我想把它导入到MATLAB里。可是MATLAB没有CSR这种稀疏格式,它只有一种稀疏格式可以用来处理所有类型的矩阵。因为这个矩阵在密集格式下非常大,所以我在想,怎么才能把它作为MATLAB的稀疏矩阵导入呢?
2 个回答
4
Matlab和Scipy的稀疏矩阵格式是可以互相兼容的。你需要在Scipy中获取矩阵的数据、索引和矩阵的大小,然后用这些信息在Matlab中创建一个稀疏矩阵。下面是一个例子:
from scipy.sparse import csr_matrix
from scipy import array
# create a sparse matrix
row = array([0,0,1,2,2,2])
col = array([0,2,2,0,1,2])
data = array([1,2,3,4,5,6])
mat = csr_matrix( (data,(row,col)), shape=(3,4) )
# get the data, shape and indices
(m,n) = mat.shape
s = mat.data
i = mat.tocoo().row
j = mat.indices
# display the matrix
print mat
这段代码会输出:
(0, 0) 1
(0, 2) 2
(1, 2) 3
(2, 0) 4
(2, 1) 5
(2, 2) 6
你可以用Python中的m、n、s、i和j这些值,在Matlab中创建一个矩阵:
m = 3;
n = 4;
s = [1, 2, 3, 4, 5, 6];
% Index from 1 in Matlab.
i = [0, 0, 1, 2, 2, 2] + 1;
j = [0, 2, 2, 0, 1, 2] + 1;
S = sparse(i, j, s, m, n, m*n)
这样就能得到相同的矩阵,只不过在Matlab中索引是从1开始的。
(1,1) 1
(3,1) 4
(3,2) 5
(1,3) 2
(2,3) 3
(3,3) 6
6
scipy.io.savemat
是一个可以把稀疏矩阵保存成 MATLAB 兼容格式的工具:
In [1]: from scipy.io import savemat, loadmat
In [2]: from scipy import sparse
In [3]: M = sparse.csr_matrix(np.arange(12).reshape(3,4))
In [4]: savemat('temp', {'M':M})
In [8]: x=loadmat('temp.mat')
In [9]: x
Out[9]:
{'M': <3x4 sparse matrix of type '<type 'numpy.int32'>'
with 11 stored elements in Compressed Sparse Column format>,
'__globals__': [],
'__header__': 'MATLAB 5.0 MAT-file Platform: posix, Created on: Mon Sep 8 09:34:54 2014',
'__version__': '1.0'}
In [10]: x['M'].A
Out[10]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
需要注意的是,savemat
会把它转换成 csc
格式。它还会自动处理索引起始点的差异。
在 Octave
中:
octave:4> load temp.mat
octave:5> M
M =
Compressed Column Sparse (rows = 3, cols = 4, nnz = 11 [92%])
(2, 1) -> 4
(3, 1) -> 8
(1, 2) -> 1
(2, 2) -> 5
...
octave:8> full(M)
ans =
0 1 2 3
4 5 6 7
8 9 10 11