Pandas中的分箱

0 投票
1 回答
2434 浏览
提问于 2025-04-19 21:04

假设你有一个Pandas的数据表,里面有一些数据:

"Age","Gender","Impressions","Clicks","Signed_In"
36,0,3,0,1
73,1,3,0,1
30,0,3,0,1
49,1,3,0,1
47,1,11,0,1

现在,我想要根据年龄为每一行创建一个新的分类变量(也就是新的一列),这个新列会显示每个人的年龄范围。比如,对于某一行数据:

36,0,3,0,1

我希望新列能显示'35到45岁之间'。

最终的数据记录应该看起来像这样:

36,0,3,0,1,'Between 35 and 45'

1 个回答

3

你应该准备一组示例数据,这样可以帮助别人更好地回答你的问题:

import pandas as pd
import numpy as np
d  = {'Age' : [36, 73, 30, 49, 47],
  'Gender' : [0, 1, 0, 1, 1],
  'Impressions' : [3, 3, 3, 3, 11],
  'Clicks' : [0, 0, 0, 0, 0],
  'Signed_In' : [1, 1, 1, 1, 1]}
df = pd.DataFrame(d)

这样别人就可以轻松地复制和粘贴,而不需要手动去创建你遇到的问题。

numpy的round函数可以对负的小数位进行四舍五入:

df['Age_rounded'] = np.round(df['Age'], -1)

    Age Clicks  Gender  Impressions Signed_In   Age_rounded
0   36  0       0       3           1           40
1   73  0       1       3           1           70
2   30  0       0       3           1           30
3   49  0       1       3           1           50
4   47  0       1       11          1           50

然后你可以把一个字典应用到这些值上:

 categories_dict = {30 : 'Between 25 and 35',
                    40 : 'Between 35 and 45',
                    50 : 'Between 45 and 55',
                    70 : 'Between 65 and 75'}

 df['category'] = df['Age_rounded'].map(categories_dict)

    Age Clicks  Gender  Impressions Signed_In   Age_rounded category
0   36  0       0       3           1           40          Between 35 and 45
1   73  0       1       3           1           70          Between 65 and 75
2   30  0       0       3           1           30          Between 25 and 35
3   49  0       1       3           1           50          Between 45 and 55
4   47  0       1       11          1           50          Between 45 and 55

撰写回答