NumPy数组中的多余维度
我打开了一个 .fits 格式的图像:
scaled_flat1 = pyfits.open('scaled_flat1.fit')
scaled_flat1a = scaled_flat1[0].data
然后我打印它的形状:
print scaled_flat1a.shape
我得到了以下结果:
(1, 1, 510, 765)
我希望它显示成:
(510, 765)
我该怎么去掉前面的两个1呢?
2 个回答
6
我假设 scaled_flat1a
是一个 numpy 数组?如果是这样的话,使用 reshape
命令就可以很简单地改变它的形状。
import numpy as np
a = np.array([[[[1, 2, 3],
[4, 6, 7]]]])
print(a.shape)
# (1, 1, 2, 3)
a = a.reshape(a.shape[2:]) # You can also use np.reshape()
print(a.shape)
# (2, 3)
37
有一个叫做 squeeze
的方法,正好可以满足你的需求:
它可以从数组的形状中去掉单维的条目。
参数
a : array_like Input data. axis : None or int or tuple of ints, optional .. versionadded:: 1.7.0 Selects a subset of the single-dimensional entries in the shape. If an axis is selected with shape entry greater than one, an error is raised.
返回值
squeezed : ndarray The input array, but with with all or a subset of the dimensions of length 1 removed. This is always `a` itself or a view into `a`.
比如说:
import numpy as np
extra_dims = np.random.randint(0, 10, (1, 1, 5, 7))
minimal_dims = extra_dims.squeeze()
print minimal_dims.shape
# (5, 7)