DataFrame.interpolate() 在尾部缺失数据上进行外推
考虑以下示例,我们设置了一个样本数据集,创建了一个多重索引,然后将数据框进行“展开”,接着执行线性插值,逐行填充数据:
import pandas as pd # version 0.14.1
import numpy as np # version 1.8.1
df = pd.DataFrame({'location': ['a', 'b'] * 5,
'trees': ['oaks', 'maples'] * 5,
'year': range(2000, 2005) * 2,
'value': [np.NaN, 1, np.NaN, 3, 2, np.NaN, 5, np.NaN, np.NaN, np.NaN]})
df.set_index(['trees', 'location', 'year'], inplace=True)
df = df.unstack()
df = df.interpolate(method='linear', axis=1)
展开后的数据集看起来是这样的:
value
year 2000 2001 2002 2003 2004
trees location
maples b NaN 1 NaN 3 NaN
oaks a NaN 5 NaN NaN 2
作为一种插值方法,我期待的输出是:
value
year 2000 2001 2002 2003 2004
trees location
maples b NaN 1 2 3 NaN
oaks a NaN 5 4 3 2
但实际上这个方法给出的结果是(注意这个外推的值):
value
year 2000 2001 2002 2003 2004
trees location
maples b NaN 1 2 3 3
oaks a NaN 5 4 3 2
有没有办法告诉pandas不要在序列中超出最后一个非缺失值进行外推呢?
编辑:
我还是很希望在pandas中看到这个功能,不过现在我在numpy中实现了这个功能,然后使用df.apply()
来修改df
。我在pandas中缺少的正是np.interp()
中的left
和right
参数的功能。
def interpolate(a, dec=None):
"""
:param a: a 1d array to be interpolated
:param dec: the number of decimal places with which each
value should be returned
:return: returns an array of integers or floats
"""
# default value is the largest number of decimal places in the input array
if dec is None:
dec = max_decimal(a)
# detect array format convert to numpy as necessary
if type(a) == list:
t = 'list'
b = np.asarray(a, dtype='float')
if type(a) in [pd.Series, np.ndarray]:
b = a
# return the row if it's all nan's
if np.all(np.isnan(b)):
return a
# interpolate
x = np.arange(b.size)
xp = np.where(~np.isnan(b))[0]
fp = b[xp]
interp = np.around(np.interp(x, xp, fp, np.nan, np.nan), decimals=dec)
# return with proper numerical type formatting
# check to make sure there aren't nan's before converting to int
if dec == 0 and np.isnan(np.sum(interp)) == False:
interp = interp.astype(int)
if t == 'list':
return interp.tolist()
else:
return interp
# two little helper functions
def count_decimal(i):
try:
return int(decimal.Decimal(str(i)).as_tuple().exponent) * -1
except ValueError:
return 0
def max_decimal(a):
m = 0
for i in a:
n = count_decimal(i)
if n > m:
m = n
return m
在这个示例数据集上效果很好:
In[1]: df.apply(interpolate, axis=1)
Out[1]:
value
year 2000 2001 2002 2003 2004
trees location
maples b NaN 1 2 3 NaN
oaks a NaN 5 4 3 2
3 个回答
0
这确实是个让人困惑的功能。这里有一个更简洁的解决方案,可以在最初的插值之后使用。
def de_extrapolate(row):
extrap = row[row==row[-1]]
if extrap.size > 1:
first_index = extrap.index[1]
row[first_index:] = np.nan
return row
和之前一样,我们有:
In [1]: df.interpolate(axis=1).apply(de_extrapolate, axis=1)
Out[1]:
value
year 2000 2001 2002 2003 2004
trees location
maples b NaN 1 2 3 NaN
oaks a NaN 5 4 3 2
3
从Pandas版本0.21.0开始,limit_area='inside'
这个选项告诉`df.interpolate`只填充那些被有效值包围的空值(NaN):
import pandas as pd # version 0.21.0
import numpy as np
df = pd.DataFrame({'location': ['a', 'b'] * 5,
'trees': ['oaks', 'maples'] * 5,
'year': list(range(2000, 2005)) * 2,
'value': [np.NaN, 1, np.NaN, 3, 2, np.NaN, 5, np.NaN, np.NaN, np.NaN]})
df.set_index(['trees', 'location', 'year'], inplace=True)
df = df.unstack()
df2 = df.interpolate(method='linear', axis=1, limit_area='inside')
print(df2)
结果是
value
year 2000 2001 2002 2003 2004
trees location
maples b NaN 1.0 2.0 3.0 NaN
oaks a NaN 5.0 4.0 3.0 2.0
6
把下面这一行:
df = df.interpolate(method='linear', axis=1)
替换成这个:
df = df.interpolate(axis=1).where(df.bfill(axis=1).notnull())
这个代码是用来找到后面连续的空值(NaN)的,它使用了一种叫做“回填”的方法。虽然这个方法不是特别高效,因为它需要进行两次填充操作,但通常来说,这样的问题不会太影响结果。