函数返回向量,如何通过NumPy进行最小化
我正在尝试最小化一个函数,这个函数会返回一组值,结果出现了一个错误:
设置数组元素时出现了序列问题
代码如下:
P = np.matrix([[0.3, 0.1, 0.2], [0.01, 0.4, 0.2], [0.0001, 0.3, 0.5]])
Ps = np.array([10,14,5])
def objective(x):
x = np.array([x])
res = np.square(Ps - np.dot(x, P))
return res
def main():
x = np.array([10, 11, 15])
print minimize(objective, x, method='Nelder-Mead')
在这些P、Ps和x的值下,函数返回的结果是 [[ 47.45143225 16.81 44.89 ]]
感谢任何建议
更新(完整的错误追踪信息)
Traceback (most recent call last):
File "<ipython-input-125-9649a65940b0>", line 1, in <module>
runfile('C:/Users/Roark/Documents/Python Scripts/optimize.py', wdir='C:/Users/Roark/Documents/Python Scripts')
File "C:\Anaconda\lib\site-packages\spyderlib\widgets\externalshell\sitecustomize.py", line 585, in runfile
execfile(filename, namespace)
File "C:/Users/Roark/Documents/Python Scripts/optimize.py", line 28, in <module>
main()
File "C:/Users/Roark/Documents/Python Scripts/optimize.py", line 24, in main
print minimize(objective, x, method='Nelder-Mead')
File "C:\Anaconda\lib\site-packages\scipy\optimize\_minimize.py", line 413, in minimize
return _minimize_neldermead(fun, x0, args, callback, **options)
File "C:\Anaconda\lib\site-packages\scipy\optimize\optimize.py", line 438, in _minimize_neldermead
fsim[0] = func(x0)
ValueError: setting an array element with a sequence.
更新2:这个函数应该被最小化(Ps是一个向量)
4 个回答
0
在这些P、Ps的值下,x函数返回的结果是 [[ 47.45143225 16.81 44.89 ]]
结果:解决方案是 np.array([ 31.95419775, 41.56815698, -19.40894189])
你到底需要什么结果呢?你的ValueError提示说明变量的形状有问题,你可以参考自己的代码,像这样:
from scipy.optimize import minimize
import numpy as np
P = np.matrix([[0.3, 0.1, 0.2], [0.01, 0.4, 0.2], [0.0001, 0.3, 0.5]])
Ps = np.array([10,14,5])
def objective(x):
res = np.square(Ps - np.dot(x, P)).sum() # <<<<< sum
return res
def main():
x = np.array([10, 11, 15])
res= minimize(objective, x, method='Nelder-Mead')
print(res)
if __name__ == '__main__':
main()
但最终的结果还是像上面提供的fsolve_Solution,而不是你在讨论中提到的那样。
final_simplex: (array([[ 31.95415651, 41.5681525 , -19.40893553],
[ 31.95421376, 41.56815815, -19.40892458],
[ 31.95417772, 41.56820834, -19.40895555],
[ 31.9541516 , 41.56814833, -19.40890433]]), array([2.05803682e-10, 2.22144587e-10, 2.39097188e-10, 2.65258467e-10]))
fun: 2.0580368213652934e-10
message: 'Optimization terminated successfully.'
nfev: 167
nit: 92
status: 0
success: True
x: array([ 31.95415651, 41.5681525 , -19.40893553])
0
使用 least_squares
。这需要稍微修改一下目标函数,让它返回差值,而不是差值的平方:
import numpy as np
from scipy.optimize import least_squares
P = np.matrix([[0.3, 0.1, 0.2], [0.01, 0.4, 0.2], [0.0001, 0.3, 0.5]])
Ps = np.array([10,14,5])
def objective(x):
x = np.array([x])
res = Ps - np.dot(x, P)
return np.asarray(res).flatten()
def main():
x = np.array([10, 11, 15])
print(least_squares(objective, x))
结果:
active_mask: array([0., 0., 0.])
cost: 5.458917464129402e-28
fun: array([1.59872116e-14, 2.84217094e-14, 5.32907052e-15])
grad: array([-8.70414856e-15, -1.25943700e-14, -1.11926469e-14])
jac: array([[-3.00000002e-01, -1.00000007e-02, -1.00003682e-04],
[-1.00000001e-01, -3.99999999e-01, -3.00000001e-01],
[-1.99999998e-01, -1.99999999e-01, -5.00000000e-01]])
message: '`gtol` termination condition is satisfied.'
nfev: 4
njev: 4
optimality: 1.2594369966691647e-14
status: 1
success: True
x: array([ 31.95419775, 41.56815698, -19.40894189])
2
你的目标函数需要返回一个单一的数值,而不是一个向量。你可能想要返回的是平方误差的总和,而不是平方误差的向量:
def objective(x):
res = ((Ps - np.dot(x, P)) ** 2).sum()
return res
3
如果你想要得到的结果是一个只包含 0
的向量,你可以使用 fsolve
来实现。为了做到这一点,你需要稍微调整一下你的目标函数,以确保输入和输出的形状一致:
import scipy.optimize as so
P = np.matrix([[0.3, 0.1, 0.2], [0.01, 0.4, 0.2], [0.0001, 0.3, 0.5]])
Ps = np.array([10,14,5])
def objective(x):
x = np.array([x])
res = np.square(Ps - np.dot(x, P))
return np.array(res).ravel()
Root = so.fsolve(objective, x0=np.array([10, 11, 15]))
objective(Root)
#[ 5.04870979e-29 1.13595970e-28 1.26217745e-29]
结果:解是 np.array([ 31.95419775, 41.56815698, -19.40894189])