跨多个Pandas DataFrame计算均值
我正在生成多个形状相同的数据框(dataframe),并想要相互比较它们。我希望能够计算这些数据框的平均值和中位数。
Source.0 Source.1 Source.2 Source.3
cluster
0 0.001182 0.184535 0.814230 0.000054
1 0.000001 0.160490 0.839508 0.000001
2 0.000001 0.173829 0.826114 0.000055
3 0.000432 0.180065 0.819502 0.000001
4 0.000152 0.157041 0.842694 0.000113
5 0.000183 0.174142 0.825674 0.000001
6 0.000001 0.151556 0.848405 0.000038
7 0.000771 0.177583 0.821645 0.000001
8 0.000001 0.202059 0.797939 0.000001
9 0.000025 0.189537 0.810410 0.000028
10 0.006142 0.003041 0.493912 0.496905
11 0.003739 0.002367 0.514216 0.479678
12 0.002334 0.001517 0.529041 0.467108
13 0.003458 0.000001 0.532265 0.464276
14 0.000405 0.005655 0.527576 0.466364
15 0.002557 0.003233 0.507954 0.486256
16 0.004161 0.000001 0.491271 0.504568
17 0.001364 0.001330 0.528311 0.468996
18 0.002886 0.000001 0.506392 0.490721
19 0.001823 0.002498 0.509620 0.486059
Source.0 Source.1 Source.2 Source.3
cluster
0 0.000001 0.197108 0.802495 0.000396
1 0.000001 0.157860 0.842076 0.000063
2 0.094956 0.203057 0.701662 0.000325
3 0.000001 0.181948 0.817841 0.000210
4 0.000003 0.169680 0.830316 0.000001
5 0.000362 0.177194 0.822443 0.000001
6 0.000001 0.146807 0.852924 0.000268
7 0.001087 0.178994 0.819564 0.000354
8 0.000001 0.202182 0.797333 0.000485
9 0.000348 0.181399 0.818252 0.000001
10 0.003050 0.000247 0.506777 0.489926
11 0.004420 0.000001 0.513927 0.481652
12 0.006488 0.001396 0.527197 0.464919
13 0.001510 0.000001 0.525987 0.472502
14 0.000001 0.000001 0.520737 0.479261
15 0.000001 0.001765 0.515658 0.482575
16 0.000001 0.000001 0.492550 0.507448
17 0.002855 0.000199 0.526535 0.470411
18 0.000001 0.001952 0.498303 0.499744
19 0.001232 0.000001 0.506612 0.492155
接下来,我想计算这两个数据框的平均值。
有什么简单的方法可以做到这一点吗?
为了更清楚,我想要在所有数据框的索引和列完全相同的情况下,计算每个特定单元格的平均值。
所以在我给出的例子中,[0,Source.0]
的平均值会是(0.001182 + 0.000001) / 2 = 0.0005915。
7 个回答
你可以给每个数据框架(frame)简单地加个标签,叫它 group
,然后用 concat
和 groupby
来实现你想要的操作:
In [57]: df = DataFrame(np.random.randn(10, 4), columns=list('abcd'))
In [58]: df2 = df.copy()
In [59]: dfs = [df, df2]
In [60]: df
Out[60]:
a b c d
0 0.1959 0.1260 0.1464 0.1631
1 0.9344 -1.8154 1.4529 -0.6334
2 0.0390 0.4810 1.1779 -1.1799
3 0.3542 0.3819 -2.0895 0.8877
4 -2.2898 -1.0585 0.8083 -0.2126
5 0.3727 -0.6867 -1.3440 -1.4849
6 -1.1785 0.0885 1.0945 -1.6271
7 -1.7169 0.3760 -1.4078 0.8994
8 0.0508 0.4891 0.0274 -0.6369
9 -0.7019 1.0425 -0.5476 -0.5143
In [61]: for i, d in enumerate(dfs):
....: d['group'] = i
....:
In [62]: dfs[0]
Out[62]:
a b c d group
0 0.1959 0.1260 0.1464 0.1631 0
1 0.9344 -1.8154 1.4529 -0.6334 0
2 0.0390 0.4810 1.1779 -1.1799 0
3 0.3542 0.3819 -2.0895 0.8877 0
4 -2.2898 -1.0585 0.8083 -0.2126 0
5 0.3727 -0.6867 -1.3440 -1.4849 0
6 -1.1785 0.0885 1.0945 -1.6271 0
7 -1.7169 0.3760 -1.4078 0.8994 0
8 0.0508 0.4891 0.0274 -0.6369 0
9 -0.7019 1.0425 -0.5476 -0.5143 0
In [63]: final = pd.concat(dfs, ignore_index=True)
In [64]: final
Out[64]:
a b c d group
0 0.1959 0.1260 0.1464 0.1631 0
1 0.9344 -1.8154 1.4529 -0.6334 0
2 0.0390 0.4810 1.1779 -1.1799 0
3 0.3542 0.3819 -2.0895 0.8877 0
4 -2.2898 -1.0585 0.8083 -0.2126 0
5 0.3727 -0.6867 -1.3440 -1.4849 0
6 -1.1785 0.0885 1.0945 -1.6271 0
.. ... ... ... ... ...
13 0.3542 0.3819 -2.0895 0.8877 1
14 -2.2898 -1.0585 0.8083 -0.2126 1
15 0.3727 -0.6867 -1.3440 -1.4849 1
16 -1.1785 0.0885 1.0945 -1.6271 1
17 -1.7169 0.3760 -1.4078 0.8994 1
18 0.0508 0.4891 0.0274 -0.6369 1
19 -0.7019 1.0425 -0.5476 -0.5143 1
[20 rows x 5 columns]
In [65]: final.groupby('group').mean()
Out[65]:
a b c d
group
0 -0.394 -0.0576 -0.0682 -0.4339
1 -0.394 -0.0576 -0.0682 -0.4339
在这里,每个 group
都是一样的,但这只是因为 df == df2
。
另外,你也可以把这些框架放进一个 Panel
里:
In [69]: df = DataFrame(np.random.randn(10, 4), columns=list('abcd'))
In [70]: df2 = DataFrame(np.random.randn(10, 4), columns=list('abcd'))
In [71]: panel = pd.Panel({0: df, 1: df2})
In [72]: panel
Out[72]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 10 (major_axis) x 4 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 9
Minor_axis axis: a to d
In [73]: panel.mean()
Out[73]:
0 1
a 0.3839 0.2956
b 0.1855 -0.3164
c -0.1167 -0.0627
d -0.2338 -0.0450
这里有一个解决方案,首先把两个数据框(dataframe)都“展开”,这样它们就变成了带有多重索引(cluster, colnames)的序列(series)。然后你可以使用序列的加法和除法,这样就会自动根据索引进行操作,最后再把它们“展开”回来……代码如下:
averages = (df1.stack()+df2.stack())/2
averages = averages.unstack()
这样就完成了……
或者为了更通用的目的……
dfs = [df1,df2]
averages = pd.concat([each.stack() for each in dfs],axis=1)\
.apply(lambda x:x.mean(),axis=1)\
.unstack()
根据Niklas的评论,问题的解决办法是 panel.mean(axis=0)
。
这里有一个更完整的例子:
import pandas as pd
import numpy as np
dfs = {}
nrows = 4
ncols = 3
for i in range(4):
dfs[i] = pd.DataFrame(np.arange(i, nrows*ncols+i).reshape(nrows, ncols),
columns=list('abc'))
print('DF{i}:\n{df}\n'.format(i=i, df=dfs[i]))
panel = pd.Panel(dfs)
print('Mean of stacked DFs:\n{df}'.format(df=panel.mean(axis=0)))
这段代码会输出以下结果:
DF0:
a b c
0 0 1 2
1 3 4 5
2 6 7 8
3 9 10 11
DF1:
a b c
0 1 2 3
1 4 5 6
2 7 8 9
3 10 11 12
DF2:
a b c
0 2 3 4
1 5 6 7
2 8 9 10
3 11 12 13
DF3:
a b c
0 3 4 5
1 6 7 8
2 9 10 11
3 12 13 14
Mean of stacked DFs:
a b c
0 1.5 2.5 3.5
1 4.5 5.5 6.5
2 7.5 8.5 9.5
3 10.5 11.5 12.5
我和@ali_m的做法差不多,不过因为你想要每一行和每一列的组合都算一个平均值,所以我得出了不同的结论:
df1 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df2 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df = pd.concat([df1, df2])
foo = df.groupby(level=1).mean()
foo.head()
x y
0 0.841282 2.5
1 0.716749 1.0
2 -0.551903 2.5
3 1.240736 1.5
4 1.227109 2.0
假设这两个数据表的列是一样的,你可以直接把它们拼接在一起,然后对拼接后的数据表进行统计分析:
import numpy as np
import pandas as pd
# some random data frames
df1 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df2 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
# concatenate them
df_concat = pd.concat((df1, df2))
print df_concat.mean()
# x -0.163044
# y 2.120000
# dtype: float64
print df_concat.median()
# x -0.192037
# y 2.000000
# dtype: float64
更新
如果你想对两个数据集里相同索引的每一组行进行统计,可以使用 .groupby()
来按行索引分组数据,然后计算平均值、中位数等:
by_row_index = df_concat.groupby(df_concat.index)
df_means = by_row_index.mean()
print df_means.head()
# x y
# 0 -0.850794 1.5
# 1 0.159038 1.5
# 2 0.083278 1.0
# 3 -0.540336 0.5
# 4 0.390954 3.5
这个方法即使在你的数据表行数不一样的情况下也能正常工作——如果某个特定的行索引在其中一个数据表里缺失,平均值或中位数会只根据现有的那一行来计算。