分形地形/高度图生成
我正在尝试重新实现之前成功做过的一个项目,但现在总是感觉有点不对劲……
我用的这个生成分形高度图的算法,基本上是递归的菱形-方形算法。它看起来运行得挺顺利,但生成的地图就是“感觉不太对”……地图似乎没有成功访问网格中的每一个点来确定颜色,而且地图上还残留着一些“结构”,这似乎和网格的递归方式有关。我不太确定问题出在哪里,导致我看到的结果是这样的。
我目前的代码是:
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from math import sqrt
from collections import namedtuple
import random
Coord=namedtuple('Coord','x y')
class Grid(object):
'''grid handedness, 0,0=topleft max,max=bottomr right'''
def __init__(self,x,y):
self.size_x=x
self.size_y=y
self.data=[ [0 for _ in xrange(x)] for _ in xrange(y) ]
def _render_to_text(self):
print '\n\n'
for row in self.data:
print [ int(n) for n in row ]
def _render_to_colormap(self):
plt.imshow(self.data, interpolation='nearest',cmap=cm.gist_rainbow)
plt.show()
def render(self):
self._render_to_colormap()
#self._render_to_text()
def make(self,coordinate,value):
self.data[coordinate.x][coordinate.y]=value
def make_new(self,coordinate,value):
if self.data[coordinate.x][coordinate.y]==0:
self.make(coordinate,value)
def get(self,coordinate):
return self.data[coordinate.x][coordinate.y]
class FractalHeightmap(object):
'''populates a 'grid' with a fractal heightmap'''
def __init__(self,grid,rng_seed,roughness,
corner_seeds=[(0,100),(0,100),(0,100),(0,100)],
max_depth=3):
self.grid=grid
self.max_depth=max_depth
self._set_initial_corners(corner_seeds)
self.roughness=roughness
self.generate_heightmap([Coord(0,0),
Coord(self.grid.size_x-1,0),
Coord(0,self.grid.size_y-1),
Coord(self.grid.size_x-1,self.grid.size_y-1)],1
)
def _set_initial_corners(self,corner_seeds):
tl,tr,bl,br=corner_seeds
seeds=[[tl,tr],[bl,br]]
for x_idx,x in enumerate([0,self.grid.size_x-1]):
for y_idx,y in enumerate([0,self.grid.size_y-1]):
try:
minval,maxval=seeds[x_idx][y_idx]
val=minval+(random.random()*(maxval-minval))
except ValueError:
val=seeds[x_idx][y_idx]
self.grid.make_new(Coord(x,y),val)
def generate_heightmap(self,corners,depth):
'''corners = (Coord(),Coord(),Coord(),Coord() / tl/tr/bl/br'''
if depth>self.max_depth: return
#
tl,tr,bl,br=corners
center=Coord((tr.x-tl.x)/2,(br.y-tr.y)/2)
#define edge center coordinates
top_c=Coord(tl.x+((tr.x-tl.x)/2),tl.y)
left_c=Coord(tl.x,tl.y+((bl.y-tl.y)/2))
right_c=Coord(tr.x,tr.y+((br.y-tr.y)/2))
bot_c=Coord(bl.x+((br.x-bl.x)/2),bl.y)
#calc the center and edge_center heights
avg=sum([self.grid.get(tl),
self.grid.get(tr),
self.grid.get(bl),
self.grid.get(br)]
)/4.0 ###NOTE, we can choose to use the current corners, the new edge-centers, or all
#currenty we use the current corners
#then do the edge centers
offset=((random.random())-.5)*self.roughness
self.grid.make_new(center,avg+offset)
#top_c
avg=sum([self.grid.get(tl),
self.grid.get(tr)]
)/2.0
offset=((random.random())-.5)*self.roughness
self.grid.make_new(top_c,avg+offset)
#left_c
avg=sum([self.grid.get(tl),
self.grid.get(bl)]
)/2.0
offset=((random.random())-.5)*self.roughness
self.grid.make_new(left_c,avg+offset)
#right_c
avg=sum([self.grid.get(tr),
self.grid.get(br)]
)/2.0
offset=((random.random())-.5)*self.roughness
self.grid.make_new(right_c,avg+offset)
#bot_c
avg=sum([self.grid.get(bl),
self.grid.get(br)]
)/2.0
offset=((random.random())-.5)*self.roughness
self.grid.make_new(bot_c,avg+offset)
self.generate_heightmap((tl,top_c,left_c,center),depth+1)
self.generate_heightmap((top_c,tr,center,right_c),depth+1)
self.generate_heightmap((left_c,center,bl,bot_c),depth+1)
self.generate_heightmap((center,right_c,bot_c,br),depth+1)
if __name__ == '__main__':
g_size=32 #//must be power of 2
g=Grid(g_size+1,g_size+1)
f=FractalHeightmap(g,1,10,max_depth=sqrt(g_size))
g.render()
如果你直接运行这段代码,你应该能看到颜色图,并且能明白为什么它看起来不太对。把深度改成不同的2的幂次方,可以看到不同的效果——值在256及以上的生成会花费一些时间。
非常感谢任何帮助。
2 个回答
0
我自己解决了这个问题,经过一步一步地检查网格是如何构建的。
中心点的计算是错误的,
原来的写法是:center=Coord((tr.x-tl.x)/2,(br.y-tr.y)/2)
应该改成:
center=Coord(tl.x+((tr.x-tl.x)/2),tr.y+((br.y-tr.y)/2))
之前的写法忘记把子网格的起始位置的x和y坐标加到计算出的中点坐标上了。
3
抱歉这个话题有点跑题,但我想分享一个生成地形的不错算法。我开始使用这个算法是因为我发现自己不喜欢钻石和方形的方式。这里有个描述,下面是一个实现的代码:
#/usr/bin/python
#coding=UTF-8
import random,math
class HillGrid:
def __init__(self,KRADIUS =(1.0/5.0),ITER=200,SIZE=40):
self.KRADIUS = KRADIUS
self.ITER = ITER
self.SIZE = SIZE
self.grid = [[0 for x in range(self.SIZE)] for y in range(self.SIZE)]
self.MAX = self.SIZE * self.KRADIUS
for i in range(self.ITER):
self.step()
def dump(self):
for ele in self.grid:
s = ''
for alo in ele:
s += '%s ' % str(alo)
print s
def __getitem__(self,n):
return self.grid[n]
def step(self):
point = [random.randint(0,self.SIZE-1),random.randint(0,self.SIZE-1)]
radius = random.uniform(0,self.MAX)
x2 = point[0]
y2 = point[1]
for x in range(self.SIZE):
for y in range(self.SIZE):
z = (radius**2) - ( math.pow(x2-x,2) + math.pow(y2-y,2) )
if z >= 0:
self.grid[x][y] += int(z)
if __name__ == '__main__':
h = HillGrid(ITER=50,SIZE = 20)
h.dump()