Python/pandas中的MultinomialNB在预测时返回“对象未对齐”错误

0 投票
2 回答
606 浏览
提问于 2025-04-18 13:14

我有一些电子邮件的主题和它们的表现评分,我想用这些信息来预测哪些主题行会表现得好。当我运行我的MultinomialNB(多项式朴素贝叶斯分类器)时,出现了一个“对象未对齐”的错误。这是我的代码。

import pandas as pd
import numpy as np

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB

input=pd.read_csv('subject_tool_input_500.csv')
input.subject[input.subject.isnull()]=' '
good=np.asarray(input.unique_open_performance>0)
subjects=input.subject

classifier = MultinomialNB()
count_vectorizer = CountVectorizer(strip_accents='unicode')
counts=count_vectorizer.fit_transform(subjects)

classifier.fit(counts,good)
classifier.predict('test subject line')

这段代码返回了以下错误信息。

>>> classifier.predict('test subject line')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Library/Python/2.7/site-packages/sklearn/naive_bayes.py", line 63, in predict
    jll = self._joint_log_likelihood(X)
  File "/Library/Python/2.7/site-packages/sklearn/naive_bayes.py", line 457, in _joint_log_likelihood
    return (safe_sparse_dot(X, self.feature_log_prob_.T)
  File "/Library/Python/2.7/site-packages/sklearn/utils/extmath.py", line 83, in safe_sparse_dot
    return np.dot(a, b)
ValueError: objects are not aligned

这是我正在使用的输入数据。

>>> subjects
0                         Thanksgiving Dinner Delivered
1           It's Not Too Late To Order for Thanksgiving
2               Stress Free Christmas Gift They'll Love
3     Save $10 On Christmas Gift Certificates - Inst...
4                    Need a Last Minute Christmas Gift?
5                           Give Mom Something Special!
6             Yummy Steaks For Dad - $15 Off Your Order
7     Order a romantic dinner today and get it by Va...
8     Taiyo Yuden Unveils Latest in SAW Filter and D...
9     Taiyo Yuden New Noise Reducing Ferrite Bead Ch...
10    Lithium Ion Capacitors Are Ultimate Replacemen...
11                                 Art Wolfe Newsletter
12                          Art Wolfe Seminar Tour 2014
13                     Art Wolfe Spring 2014 Newsletter
14                    Day of the Dead Sale at Art Wolfe
...
8797625                                 Подписка на рассылку
8797626                                 Подписка на рассылку
8797627                             Ramadan Mubarak from MFP
8797628                   Ramadan Mubarak from Insaan Relief
8797629              UK Muslims! You have one new message...
8797630    Open House - 1249 Los Robles Place, Pomona CA ...
8797631    Open House - Custom Built Home by Conrad Buff ...
8797632    Open House - Custom built by Buff, Smith & Hen...
8797633    Open House - Custom Built Home by Conrad Buff ...
8797634    Open House - Custom Built Home by Conrad Buff ...
8797635    Open House - Custom Built Home by Conrad Buff ...
8797636    Open House - Buff, Smith & Hensman custom buil...
8797637    RAMADAN PROGRAMS: Dars-e-Qur'an in Rawalpindi ...
8797638               Dars-e-Qur'an by Shaykh Hammad Mahmood
8797639               Dars-e-Qur'an by Shaykh Hammad Mahmood
Name: subject, Length: 8797640, dtype: object
>>> counts
<8797640x1172387 sparse matrix of type '<type 'numpy.int64'>'
    with 62516240 stored elements in Compressed Sparse Column format>
>>> good
array([ True, False,  True, ..., False,  True,  True], dtype=bool)

我不知道为什么会出现这个问题。上周我没有使用pandas(一个数据处理库)也能完成这个任务,但这次我想用数据框来帮助我后面的工作。

2 个回答

0

你需要添加tf-idf矩阵,而不仅仅是计数。

subcount=count_vectorizer.transform(["this is a test subject"])
tfidf = tfidf_transformer.transform(subcount)
classifier.predict(tfidf)
1

我真是个傻瓜。我还需要获取我想要预测的主题行的计数,所以最后的结果应该更像这样。

subcount=count_vectorizer.transform(["this is a test subject"])
classifier.predict(subcount)

希望将来看到这个的人能避免犯同样的错误。

撰写回答